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Is the Percolation Transition of Hard 
Spheres a Thermodynamic Phase Transition? 
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In hard-sphere systems, there is a fluid-solid transition, but no gas-liquid trans- 
ition. In the fluid region, however, one can find a purely geometric percolation 
transition, which is studied in detail. The van der Waals model of hard spheres 
is treated. In this model, a uniform negative background potential is added. This 
modification does not change the structure, but induces a gas-liquid transition. 
In fact, percolation and the gas-liquid transition can be related to each other. 
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1. I N T R O D U C T I O N  

Simple model  systems like hard spheres have been studied for many  years 
in the a t tempt  to unders tand the structure and dynamics of  real fluids. (1) It 
has turned out  that  for the most  part  purely geometrical  considerations a r e  
sufficient to unders tand the hard-sphere properties. (2"3) An early a t tempt  to 
at tack this problem was scaled particle theory. (4) H o w a r d  Reiss was one of 
the inventors of  this theory (5) and is still interested in the hard-sphere 
problem. (6) 

In recent years, interest in geometrical  condiderat ions has increased 
due to the study of  percolation, (7) especially in the con t inuum case/s) The 
first paper  that  directly combined percolat ion with hard-sphere systems 
was published a decade ago. (9) This will be the starting point  for the 
present considerations.  

In the following, I consider N spheres in a large volume V (density 
p = N / V ) .  The diction refers to the three-dimensional case ("volume," 
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"spheres"), but for the most part the general D-dimensional case will be 
treated. Hard-sphere systems exhibit a fluid-solid transition (for D > 1), 
but no gas-liquid transition, due to the absence of attractive forces: 

e x p ( _ u o / k T ) = { l :  r~>a  (1) 
0: r o. < 

The interaction potential uij between two spheres i and j makes it 
impossible for the spheres to come closer than rij = a, where ~r is the hard- 
sphere diameter. 

Now consider a sphere i enclosed in the cage built up of its neighbors. 
The volume where the center of sphere i may move (with the neighbors 
held fixed) is the free volume vf(i). It can be calculated in the following 
way. Spheres of radius ~r (diameter d =  2cr) are drawn around the centers of 
the neighbors. The small space left open by these spheres is the free volume. 
The large spheres (diameter d) are called exclusion, intersection, or collision 
spheres. They are partly penetrable with a hard core of diameter a = d/2. 

At very high density, each particle is confined in a small free volume 
which varies from particle to particle and fluctuates in the course of time. If 
the density decreases, the average free volume increases, and the cages open 
up in more and more cases. The density where the first free volume vs(i ) 
spanning the total system occurs (e.g., from top to bottom) is the 
percolation density of free volume pPf. The corresponding particle i may 
wander around the whole system. Thus, an important dynamical feature of 
hard spheres is given by the behavior of the exclusion spheres. 

At very low density, the exclusion spheres are isolated. With increasing 
density, more and more exclusion spheres overlap, and overlapping spheres 
form clusters. At percolation density ppe the first spanning cluster of 
exclusion spheres occurs. The total volume covered by the overlapping 
exclusion spheres is the excluded volume V e. No additional hard sphere 
could be inserted there, only Va = V -  Ve being accessible for the center of 
such a sphere. Va is called the accessible, available, or spare volume, ~2) or, 
misleadingly, also the free volume. At low density, separate pieces of 
excluded volume (namely the exclusion spheres) move in a connected "sea" 
of accessible volume. At high density, it is just the other way around: small 
pieces of accessible volume are surrounded by a connected excluded 
volume. These pieces are sometimes called cavities, holes, vacancies, pores, 
or voids, depending on the main interest of the respective author. The 
corresponding density of percolation of accessible volume is ppa 

Thus, there are three percolation densities: pPf, ppe, and ppa. Before we 
consider these densities further, the difference between free volume and 
accessible volume needs to be stressed: Va/V, sometimes called the 
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porosity, is the probability that a random insertion of an additional sphere 
can take place. It is a rapidly decreasing function of densityJ 3) Va is directly 
connected with the excess chemical potential of hard spheres. (2'3) On the 
other hand, the free volume vf(i) is generated by taking away sphere i (cen- 
tered at ri). Accordingly, the total Va increases, vf(i) is just the part of the 
increased Va that is connected to ri. If Va = 0, all vf(i) are separated from 
each other. Each particle is enclosed in the cage of its neighbors. If Va ~ 0, 
the spheres bordering a connected piece of Va (cavity) have this cavity as 
common part of their free volumes. Thus, the occurrence of a spanning 
cavity means that the free volumes of all bordering spheres are also span- 
ning. This means 

ppf/> ppa (2) 

On the other hand, there is only one possibility that a spanning free 
volume vf(i) occurs, but no spanning cavity: Sphere i interrupts the 
otherwise spanning cavity. For large systems, the influence of a single 
sphere on the density difference (pPf-ppa) is negligible, the equality sign in 
(2) being valid. Thus, we have only to consider ppe and ppa in the 
following. 

In the one-dimensional case of hard rods, a single exclusion rod 
interrupts the accessible volume. Equivalently, a single cavity interrupts the 
cluster of exclusion rods. Thus, 

D =  1: op pe= l, o'ppa = 0 (3) 

Thus, in the whole interesting region 0 < ap < 1, neither the excluded nor 
the accessible volumes percolate. D = 1 is exceptional in many respects and 
will not be considered further. In two dimensions, ~9) 

D = 2: ppe = ppa = pp (4) 

Above pP, the accessible volume breaks up into pieces; below pP, the same 
is the case for the excluded volume. For increasing D, D ~> 3, there is an 
increasing density region where both accessible and excluded volumes are 
spanning: 

D~>3: ppe < ppa (5) 

This may be compared with the "coexistence" of the spanning blood and 
nervous systems. Furthermore, they do not break the human body into 
pieces. This would not work in less than three dimensions. 

The above considerations may be compared with site percolation on 
the triangular lattice (D = 2) and fcc lattice (D = 3), (see Ref. 7, p. 17). The 
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lattice points are randomly occupied with probability p (black points), the 
others remaining white. Neighboring points of the same color form clusters. 
From the symmetric definition it follows that 

p p b  = 1 - p p w  (6) 

for the percolation densities of black (b) and white (w) clusters. The actual 
v a l u e s  a r e  (7) 

D = 2: ppb/pvW = 1 (7) 

D = 3: ppb/pbw = 0.247 (8) 

in accordance with (4) and (5). 

2. C O M P U T E R  EXPERIMENTAL VALUES OF HARD-SPHERE 
PERCOLATION DENSITIES 

Determination of ppe  for hard disks yielded (9) 

D = 2: z pe = ppe/p o = 0.245 __ 0.020 (9) 

where z is the density relative to regular (triangular) close packing Po. 
Before we proceed, it should be mentioned that the different dimensionless 
density definitions used in the literature are quite confusing. Besides z, also 
y = v~p, bp, and aOp can be found, v~ is the volume of the hard sphere 
(diameter a), y (also termed q or ~b) is the packing fraction, the fraction of 
the total volume filled by the spheres, b = B 2 = 2 ~  lv~ is the second virial 
coefficient for hard spheres. The relations between the different densities are 

D = I :  y = b p = a p = z  (10) 

D = 2: 2y = bp = �89 = 3 - i/2zcz (11 ) 

D = 3: 4y = bp = ~ga3p = _~21/2z~z (12) 

In the hard-sphere case, the corresponding exclusion spheres automatically 
have diameter d =  2a. But one may generalize this relation, d/a ~> 1. This 
results in the model of extended spheres~ (8) They have diameter d and a 
concentric hard core of diameter ~. The cores are not allowed to overlap. 
Again, the overlapping extended spheres define V r the remaining 
V a =  V - V  e not being covered by them. However, the original meaning 
(the volume "excluded" or "accessible" for the insertion of a further par- 
ticle) only holds if the fictitious additional particle is a sphere with a hard 
core of diameter d -  a. 
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Several papers (8'1~ consider ppe as a function of the ratio a/d using 
the model of extended spheres. Unfortunately, this yields a further set of 
densities based on d instead of or, [cf. Eqs. (10)-(12)]. For  instance, 

y ~ =  v~p  = (d /G)  ~ y (13) 

The conversion factor (d/a) D holds for the other density definitions, too. 
The following considerations are restricted to y. Thus, the hard-disk value 
(9) becomes 

D = 2, ref. 9: ype = 0.222 • 0.018 (14) 

From the literature considering extended spheres, it can be deduced for 
hard spheres ( d=  2a) that 

D = 2, ref. 10: ype =0.213 _+0.009 (15) 

D = 2 ,  ref. 11: ype = 0.217_ 0.006 (16) 

This may be compared with the results of parallel extended squares, (m) 
which yield the same dependence of ype as a function of a/d up to high 
density. For the case D = 2, 

D = 2 ,  ref. 12: ype=0.21 _+0.01 (17) 

which is consistent with (14)-(16). In the three-dimensional case, (8'11) 

D = 3 ,  ref. 11: yP*=0.042_0.002 (18) 

is the estimate for extended spheres, d = 2or. As to the accessible volume, so 
far an estimate of the two- and three-dimensional ypa can  be made only 
indirectly. Speedy (2) obtained a simple hard-sphere equation of state by 
estimating the cavity distribution in hard-sphere systems. The result for the 
compressibility factor Z - P/pk  T was 

D = 2, 3, ref. 2: Z - 1 = �89 exp 5z (19) 

where P is the pressure, k is Boltzmann's constant, and T is the tem- 
perature. For  the medium and dense fluid region, the relative deviation of 
expression (19) from the correct Z - 1  lies within 2%. Going to smaller 
densities, the deviations explode due to the percolation transition of 
accessible volume, the assumption of isolated cavities no longer being valid. 
It follows that 

D = 2, ref. 2: ypa = 0.20 • 0.02 (20) 

D = 3, ref. 2: ypa = 0.24 _+ 0.04 (21) 

822/52/5-6-19 
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the relative deviation of (19) from the correct Z - 1  being in the range 
3-10%. Equation (20) is consistent with (14)-(17), reflecting the identity 
ypa= yp~ for D = 2, Eq. (4). Combination of (18) and (21) yields 

D = 3: ype/ypa = 0.18 -t- 0.04 (22) 

which may be compared with the lattice result 0.247, Eq. (8). 
A further hint concerning ypa (hard spheres, D = 3) can be found in 

ref. 13. There it is mentioned that diffusion, viscosity and the velocity 
autocorrelation function change from "gaslike" to "liquidlike" at a packing 
fraction around 0.25. Since these dynamic quantities are connected with 
percolation of excluded volume (see the Introduction), this means that 

D = 3, ref. 13: ypa ~ 0.25 (23) 

The estimates of percolation density may be contrasted to the density 
at the fluid-solid transition of hard spheres. The corresponding fluid den- 
sities are y = 0.69 and 0.49 for D = 2 and 3, respectively. Thus, it turns out 
that hard-sphere systems have a thermodynamic phase transition 
(fluid-solid) and a purely geometric transition (percolation, in the fluid 
region for both ype and ypa). There is no evidence that the virial series 
shows any pecularity at yPe or ypa.(9,13) On the other hand, the physical 

clustering and the mathematical clusters yielding the virial coefficients 
depend on each other. (8'13) The old idea of Mayer relates the gas-liquid 
transition to the first occurrence of an infinite cluster. This indicates that 
ype should correspond to the gaseous density yg at the transition, which, 
however, is suppressed for hard spheres. In analogy, one may conjecture 
that the liquid density y~ at the gas-liquid transition corresponds to ypa. 
For D = 2 ,  ype=ypa ,  thus giving the critical density y g = y (  In the 
following, this will be worked out in detail. 

3. V A N  DER W A A L S  M O D E L  

The only possibility to add some kind of attractive "force" to a hard- 
sphere system without changing the structure is a uniform negative 
background potential depending on density. This leads to the van der 

Waals model (ref. 1, p. 145) with the equation of state 

P = Ph.s. -- AY 2 (24) 

Since the structure does not change for given density, the percolation den- 
sities are not changed. Due to Maxwell's equal-area rule in the P - V  
diagram, the location of the fluid-solid transition slightly changes with 
A.(14) 
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For  the present considerations, the most important  point is the 
occurrence of a gas-liquid transition. We start with D = 2. We determine 
the critical point and check to see if it is consistent with yP, Eq. (4): 

D = 2: yC ~ ype = ypa ~_ yp (25) 

The critical point is given by 

y = yC: dP/dy = d2P/dy 2 = 0 (26) 

For  the hard-sphere pressure Ph .... Eq. (24), we insert the virial expansion 
for hard disks up to the seventh virial coefficient B7, (15'16) 

D = 2: yZh.~. = v~Ph.~./kT= y + ~ B , ( 2 / B 2 ) " -  1 y ,  
n=2 

= y + 2y ~ + 3.12802y 3 + 4.25785y 4 

+ 5.33690y 5 + 6.3626(3)y 6 + 7.35(3)y v (27) 

Z is again the compressibility factor. The numbers in parentheses are the 
uncertainties of the last digits. Combining (24), (26), and (27) yields 

y~ = 0.21223 _-t- 0.00001 (28) 

This in accordance with Eqs. (14)-(17) and (20). One can see that the con- 
tribution of B7 to the pressure is already very small at this density. Taking 
into account the higher virial coefficients up to Blo which are 
approximately known, the detailed results are 

D = 2 :  y~ = 0.2115_ 0.0001, Z~ = 0.366_+ 0.001 
(29) 

( voA /kT )  ~ = 5.915 _ 0.003 

In the three-dimensional case, the same procedure as above yields 

D = 3: y~ = 0.13006 ___ 0.00005, Z ~ = 0.3592 + 0.0006 
(30) 

( voA /kT )  ~ = 10.614 + 0.004 

using again the virial coefficients up to Blo .(17) Inclusion of further virial 
coefficients would not change the results (29), (30). Incidentally, the critical 
density and compressibility factor do not depend on temperature. 

Now we turn to the three-dimensional gas-liquid transition away from 
the critical point and check the ansatz 

D = 3 :  ype ~ yg<yC<y~ L ypa (31) 
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(see Section 2, last paragraph), yg and yt are the gaseous and liquid 
densities at the transition. Unlike the situation for the two-dimensional 
case, Eq. (25), yg and yt cannot be calculated uniquely without additional 
information. Thus, we assume 

D = 3 :  yg = yPe = 0.042_+ 0.002 (32) 

[-see Eq. (18)] and look for the corresponding yl. According to (31), the 
question to consider is whether the resulting yt is consistent with ypa 
[-Eqs. (21), (23)]. To calculate yt, it is advantagous to use the analytical 
Carnahan Starling expression,(~8) 

Zh.s. = v,~Ph.s./ykT= (1 + y + y2 _ y3)/(1 _ y)3 (33) 

Using this expression yields yC = 0.13044, which is very close to the correct 
critical density, Eq. (30). For given yg, yl and B =- v,~A/kT are determined 
by 

ytZ(y' ,  B) = ygZ(y  g, B) (34) 

~ y ~Z(y, ~) dy = z (y ' ,  ~) - Z(y~, ~) (35) 

Equation (34) means that the pressure is identical [cf. (33)]. Equation (35) 
is the appropriate version of Maxwelrs equal-area rule. Using the 
Carnahan Starling expression (33) in the van der Waals model (24), one 
has from Eqs. (34) and (35), respectively, 

B A(y  2) = A [y(1 + y + y2 _ y3)/(1 _ y)3]  (36) 

2 B A y = A l n y + A [ ( 4 - 4 y + 3 y 2 - - y 3 ) / ( 1 - y )  3] (37) 

where 

AX=-- X (y ' ) - -  X (y  g) (38) 

for any quantity X. Eliminating B yields yt as a function of yg. Inserting the 
value (32) for yg, one gets 

J = 0.255 -T- 0.004, Z I =  0.113 _ 0.005 
(39) 

B = v,~A/kT= 11.92 -T- 0.09 

The T instead of -t- in the uncertainties of yt and B means that increasing 
yg induces decreasing yt and B. The value obtained for yt is in very good 
agreement with the estimates for ypa [-Eqs. (21), (23)]. 
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According to the above results, the hypothesis connecting the 
percolation transition to the gas-liquid transition still holds. It predicts 
ypa = ype (D = 2) and the connection between ypa and ype (O = 3, Eqs. (36), 
(37)) much more precisely than these quantities are known. Thus, the 
hypothesis is open for further tests. 
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